Tetrahedron 65 (2009) 9271-9279

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of dichloromethyl-substituted salicylates and pyran-4-ones by cyclocondensation of 1,3-bis(silyloxy)-1,3-butadienes with 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one: control of the C,C- and C,O-regioselectivity by the choice of Lewis acid

Vahuni Karapetyan ^a, Satenik Mkrtchyan ^a, Gagik Ghazaryan ^a, Alexander Villinger ^a, Christine Fischer ^b, Peter Langer ^{a,b,*}

^a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany ^b Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

ARTICLE INFO

Article history: Received 27 June 2009 Received in revised form 27 August 2009 Accepted 3 September 2009 Available online 9 September 2009

ABSTRACT

The TiCl₄-mediated formal [3+3] cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one afforded a variety of functionalized 6-dichloromethyl-4-methoxysalicylates with very good regioselectivity. Some of the products were transformed into 6-formyl-4-methoxysalicylates. The employment of Me₃SiOTf instead of TiCl₄ resulted in a change of the regioselectivity and in the formation of functionalized 2-(dichloromethyl)pyran-4-ones.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The dichloromethyl group is of interest as a precursor of aldehydes. Dichloromethyl-substituted arenes are of potential relevance in the field of medicinal chemistry. To date, however, only moderate pharmacological activities have been reported.¹⁻³ Dichloromethylsubstituted arenes have been previously prepared by chlorination of the corresponding aldehydes using various chlorination agents.⁴ Despite its great utility, this approach suffers from the fact that the required starting materials, functionalized aromatic aldehydes, are not always readily available. An alternative synthesis of dichloromethyl-substituted arenes and hetarenes is based on direct nucleophilic substitution reactions of nitroarenes with chloroform.⁵ A drawback of this method is the formation of regioisomeric mixtures in some cases. An alternative strategy is based on the application of suitable CHCl₂-containing substrates in cyclocondensation reactions ('building block approach'). Such reactions have only scarcely been reported to date. Chan and Stossel reported the synthesis of a 6dichloromethyl-4-hydroxysalicylate by formal [5+1] cyclization of 1-methoxy-1,3,5-tris(silyloxy)-1,3,5-hexatriene with dichloroacetyl chloride.⁶ Recently, we have reported⁷ a new approach to 6-(trifluoromethyl)salicylates by formal [3+3] cyclizations⁸ of 1,3-bis(silyloxy)-1,3-butadienes⁹ with 1-ethoxy-4,4,4-trifluorobut-1-en-3ones. In addition, it was found that the product distribution of the

* Corresponding author. Fax: +49 381 4986412.

E-mail address: peter.langer@uni-rostock.de (P. Langer).

cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 1,1-dimethoxy-4,4,4-trifluorobut-1-en-3-one is influenced by the choice of the Lewis acid.¹⁰ Recently, we have reported the synthesis of 6-formylsalicylates based on the cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 1-ethoxy-4,4-dichorobut-1-en-3-one.¹¹ Herein, we report, for the first time, the synthesis of 6-dichloromethyl-4-methoxysalicylates by TiCl₄-mediated cyclocondensation of 1,3-bis(silyloxy)-1,3-butadienes with 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one. The products can be transformed into 6-formyl-4-methoxysalicylates. In addition, we have found that 2-(dichloromethyl)pyran-4-ones were formed when Me₃SiOTf instead of TiCl₄ was employed. The products reported herein have not been previously prepared and are not readily available by other methods.

2. Results and discussion

The synthesis of 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one (1) has, to the best of our knowledge, not yet been reported.¹² It was prepared, in analogy to the procedure reported for the synthesis of 1,1-diethoxy-4,4,4-trifluorobut-1-en-3-one,¹³ by reaction of dichloroacetic anhydride with 1,1,1-trimethoxyethane (Scheme 1).

Scheme 1. Synthesis of 1. Conditions: *i*, pyridine, CH₂Cl₂, 20 °C, 12 h.

^{0040-4020/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.09.016

1,3-Bis(silyloxy)-1,3-butadienes **2a–o** were prepared according to the literature from the corresponding β -ketoesters in two steps.^{14–16}

The TiCl₄-mediated reaction of **1** with 1,3-bis(silyloxy)-1,3butadiene **2a** afforded 6-dichloromethyl-4-methoxysalicylate **3a** in 47% yield (Scheme 2). The best yield was obtained when the solution was slowly warmed from -78 °C to 20 °C, when the reaction was carried out in a highly concentrated solution, and when an excess (2.0 equiv) of **2a** was employed.

Scheme 2. Possible mechanism of the formation of 3a.

The formation of **3a** can be explained by reaction of **1a** with TiCl₄ to give allylic cation **A**. The attack of the terminal carbon atom of **2a** onto **A** afforded intermediate **B** and extrusion of Me₃SiCl gave **C**. The elimination of Me₃SiOMe (intermediate **D**) and subsequent cyclization gave intermediate **E** (Scheme 2). The elimination of TiCl₃OH (before or during the aqueous work-up) and aromatization resulted in the formation of product **3a**. Product **3a**, containing the CHCl₂ group located *ortho* to the ester group, was formed with excellent regioselectivity. The formation of the other regioisomer, containing the CHCl₂ group located *para* to the ester group, was not observed. The moderate yield can be explained by TiCl₄-mediated oxidative dimerization of the diene. This type of process has been previously reported.¹⁷

The TiCl₄-mediated reaction of **1** with 1,3-bis(silyloxy)-1,3-butadienes **2a–h** afforded the 6-dichloromethyl-4-methoxysalicylates **3a–h** in moderate yields (Scheme 3, Table 1). The yields also depend on the type of diene employed. However, no clear trend was observed. The reaction of **3d,e,g,h** with NaOMe–MeOH and subsequent addition of hydrochloric acid afforded the 6-formylsalicylates **4a–d** in good yields. The structures of all products were confirmed by spectroscopic methods. The structures of **3e** and **4b** were independently confirmed by X-ray crystal structure analyses (Figs. 1 and 2).¹⁸

Scheme 3. Synthesis of **3a–h** and **4a–d**. Conditions: *i*, TiCl₄, CH₂Cl₂, –78 to 20 °C; *ii*, (1) NaOMe, MeOH, 20 °C, 24 h, (2) HCl, H₂O.

The reaction of **1** with 1,3-bis(silyloxy)-1,3-butadiene **2i**, carried out in the presence of Me₃SiOTf (1.0 equiv) instead of TiCl₄, resulted in the formation of 2-(dichloromethyl)pyran-4-one **5a** (Scheme 4).

The formation of the corresponding salicylate was *not* observed. The formation of **5a** presumably proceeds by formation of allylic cation **F** (Scheme 4). The attack of the terminal carbon atom of **2i** onto **F** gave intermediate **G**. Now two possible pathways can be discussed. Path A: The direct cyclization of intermediate **G** (via the oxygen atom derived from **1**) afforded intermediate **H**, which was subsequently transformed into **5a** during the aqueous work-up. Alternatively, mechanism path B can be envisaged: the elimination of Me₃SiOTf from **G** gave **I**. The latter underwent elimination of Me₃SiOMe, to give intermediate **J**, and subsequent cyclization by attack of the oxygen atom (derived from **2i**) to give intermediate **K**. The elimination of silanol (before or during the aqueous work-up) resulted in the formation of pyran-4-one **5a**.

The Me₃SiOTf-mediated cyclization of **1** with 1,3-bis(silyloxy)-1,3-butadienes **2a–d** and **2i–o** afforded the functionalized 2-(dichloromethyl)pyran-4-ones **5a–k** (Scheme 5, Table 2). The yields of the esters **5c–k** are higher than the yields of the ketones **5a,b**. This can be explained by the higher nucleophilicity of β -ketoesterderived 1,3-bis(silyloxy)-1,3-butadienes compared to those derived from 1,3-diketones. The best yield was obtained for product **5c**, which is derived from the simple diene **2a**. The structures of all products were confirmed by spectroscopic methods. The structures of **5g** and **5i** were independently confirmed by X-ray crystal structure analyses (Figs. 3 and 4).¹⁸

The change of the regioselectivity depending on the type of Lewis acid employed might be explained based on mechanism path B. The nucleophilicity of the silyl enol ether moiety of intermediate **G** is higher than the nucleophilicity of the titanium enolate moiety of intermediate **B** (due to the high oxophilicity of titanium). Therefore, the elimination of Me₃SiCl from intermediate **B** and formation of **C** is faster than the formation of a pyranone by O-cyclization of the titanium enolate. In contrast, the O-cyclization of the silyl enol ether moiety of intermediate **B** cannot be ruled out. Therefore, the regioselective formation of salicylates **3** might be explained also by the assumption that the aromatization of intermediate **E** (by elimination of TiCl₃OH) is more rapid than the aromatization of Me₃SiOH).

It is important to note that the Me₃SiOTf-mediated formation of CHCl₂-substituted pyran-4-ones was generally observed for *all* dienes employed. This result is in contrast to the Me₃SiOTf-mediated synthesis of CF₃-substituted pyran-4-ones, which were formed only for 1,3-bis(trimethylsilyloxy)-1,3-butadienes containing no substituent located at carbon atom C-4.⁷ For substituted dienes, the formation of cyclohexenones was observed. This is illustrated by the reactions shown in Scheme 6. The Me₃SiOTf-mediated

V. Karapetyan et al. / Tetrahedron 65 (2009) 9271-9279

 Table 1

 Synthesis of 6-dichloromethylsalicylates 3a-h and 6-formylsalicylates 4a-d

2, 3	4	1,3-Bis(silyloxy)-1,3-butadienes (2)	6-Dichloromethylsalicylates (3)	% ^a (3)	6-Formylsalicylates (4)	% ^a (4)
a		Me ₃ SiO OSiMe ₃ OEt	OH O OEt MeO CHCl ₂	45		
b		Me ₃ SiO OSiMe ₃ O(CH ₂) ₂ OMe	OH O O(CH ₂) ₂ OMe MeO CHCl ₂	48		
c		Me ₃ SiO OSiMe ₃ Me OMe	OH O Me MeO CHCl ₂	32		
d	a	Me ₃ SiO OSiMe ₃ Et OMe	H O Et MeO CHCl ₂	48	OH O Et MeO CHO	70
e	b	Me ₃ SiO OSiMe ₃ nPr	OH O nPr MeO CHCl ₂	53	OH O nPr MeO CHO	77
f		Me ₃ SiO OSiMe ₃ nBu OMe	OH O nBu MeO CHCl ₂	46		
g	c	Me ₃ SiO OSiMe ₃ OMe	OH O OMe MeO CHCl ₂	52	OH O OMe MeO CHO	81
h	d	Me ₃ SiO OSiMe ₃ Ph(CH ₂) ₃	Ph(CH ₂) ₃ MeO CHCl ₂	43	Ph(CH ₂) ₃ MeO CHO	72

^a Yields of isolated products.

Figure 1. ORTEP plot of 3e (50% probability level).

cyclization of **2d** with **1** afforded pyran-4-one **5i**, while the cyclization of **2d** with **6** gave under identical conditions the cyclohexanone **7**. The latter did not undergo aromatization under the conditions employed because of the low stability of a cation located next to the CF_3 group. The different regioselectivity of the formation

Figure 2. ORTEP plot of 4b (50% probability level).

of **5i** and **7** might be explained by the lower nucleophilicity of the CF₃- compared to the CHCl₂-substituted silyl enol ether. In addition, the steric influence of the dichloromethyl group (which should be

Table 2

Synthesis of 2-(dichloromethyl)pyran-4-ones 5a-k

Scheme 5. Synthesis of 5a-k. Conditions: i, Me₃SiOTf, CH₂Cl₂, -78 to 20 °C.

higher than that of the trifluoromethyl group) may play a role (steric interaction with the ester group).

3. Conclusions

In conclusion, we have reported the TiCl₄-mediated formal [3+3] cyclocondensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 1,1-dimethoxy-4,4-dichlorobut-1-en-3-one. These reactions allow for convenient synthesis of a variety of functionalized 6-dichlor-omethyl-4-(methoxy)salicylates with very good regioselectivity. The employment of Me₃SiOTf instead of TiCl₄ resulted in a change of the regioselectivity and in the formation of functionalized 2-

2	1,3-Bis(silyloxy)-1,3- butadienes (2)	5	2-(Dichloromethyl)- pyran-4-ones (5)	% ^a (5)
i	Me ₃ SiO OSiMe ₃	a	Cl ₂ HC O Me	21
j	Me ₃ SiO OSiMe ₃	b	Cl ₂ HC O Ph	25
a	Me ₃ SiO OSiMe ₃ OEt	c	Cl ₂ HC O OEt	61
k	Me ₃ SiO OSiMe ₃ Oi-Pr	d	Cl ₂ HC O O/-Pr	47
1	Me ₃ SiO OSiMe ₃ Oi-Bu	e	Cl ₂ HC O O/-Bu	35
m	Me ₃ SiO OSiMe ₃	f	Cl ₂ HC O OBn	30
b	Me ₃ SiO OSiMe ₃	g	Cl ₂ HC O O(CH ₂) ₂ OMe	35
c	Me ₃ SiO OSiMe ₃ Me	h	Cl ₂ HC O OMe	35
d	Me ₃ SiO OSiMe ₃ Et OMe	i		33
n	Me ₃ SiO OSiMe ₃ nHept OMe	j	Cl ₂ HC O OEt	30
0	Me ₃ SiO OSiMe ₃ nOct OMe	k		25

^a Yields of isolated products.

(dichloromethyl)pyran-4-ones. A different regioselectivity was observed for CHCl₂ compared to CF₃-substituted substrates.

4. Experimental section

4.1. General comments

All solvents were dried by standard methods and all reactions were carried out under an inert atmosphere. For 1 H and 13 C NMR

Figure 3. ORTEP plot of 5g (50% probability level).

Figure 4. ORTEP plot of 5i (50% probability level).

Scheme 6. Different regioselectivity of the cyclization of 2d with 1 and 6. Conditions: i, Me_3SiOTf, CH_2Cl_2, -78 to 20 °C.

spectra the deuterated solvents indicated were used. Mass spectrometric (MS) data were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, isobutane) or electrospray ionization (ESI). For preparative scale chromatography silica gel 60 (0.063–0.200 mm, 70–230 mesh) was used. 1,3-Bis(silyloxy)-1,3-butadienes **2a–o** were prepared according to the literature from the corresponding β -ketoesters in two steps.^{14–16}

4.1.1. 1,1-Dichloro-4,4-dimethoxy-but-3-en-2-one (1). Product **1** was prepared following a known procedure.¹³ However,

dichloroacetic anhydride instead of dichloroacetic chloride was employed. Starting with methyl orthoacetate (1.202 g, 10.0 mmol), dichloroacetyl anhydride (4.800 g, 20.0 mmol) and dry pyridine (1.820 g, 23.0 mmol) in CH₂Cl₂ (15 mL), **1** was obtained as a colourless solid (1.33 g, 67%). ¹H NMR (250 MHz, CDCl₃): δ =3.87 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 5.02 (s, 1H, CCH), 5.89 (s, 1H, CHCl₂). ¹³C NMR (75.5 MHz, CDCl₃): δ =55.3, 57.3 (OCH₃), 70.8 (CHC), 73.1 (CHCl₂), 171.2 (CO), 183.8 (CO(CH₃)₂). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3120 (w), 3002 (w), 1731 (w), 1664 (m), 1531 (s), 1477 (s), 1427 (s), 1306 (s), 1275 (s), 1178 (m), 1137 (m), 1047 (s), 1014 (s), 937 (w), 719 (s). MS (EI, 70 eV): *m/z* (%)=198 (M⁺, 0.2), 135 (5), 115 (100), 89 (11), 69 (32), 47 (9). HRMS (EI): Calculated for C₆H₈O₃Cl₂ (M⁺) 197.98450, found 197.98401.

4.2. General procedure for the synthesis of 3a-h

To a CH₂Cl₂ solution (4.0 mL) of **1** (2.0 mmol) and of 1,3-bis(silyl enol ether) **2** (4.0 mmol) was added TiCl₄ (2.0 mmol) at -78 °C under argon atmosphere. The temperature of the solution was allowed to rise to 20 °C during 20 h. The solution was poured into an aqueous solution of HCl (10%). The organic and the aqueous layers were separated and the latter was extracted (3×30 mL) with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptane–EtOAc=15:1).

4.2.1. 2-Dichloromethyl-6-hydroxy-4-methoxy-benzoic acid ethyl ester (3a). Starting with 1 (0.400 g, 2.0 mmol). 1-ethoxy-1.3bis(trimethylsilyloxy)buta-1,3-diene 2a (1.098 g, 4.0 mmol) and TiCl₄ (0.379 g, 2.0 mmol) in CH₂Cl₂ (4.0 mL), **3a** was obtained as a colourless solid (0.251 g, 45%); mp=65-66 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.48$ (t, ${}^{3}J = 7.1$ Hz, 3H, OCH₂CH₃), 3.86 (s, 3H, OCH₃), 4.48 (q, ³J=7.1 Hz, 2H, OCH₂CH₃), 6.49 (d, ⁴J=2.6 Hz, 1H, CH_{Ar}), 7.22 (d, ⁴J=2.6 Hz, 1H, CH_{Ar}), 7.76 (s, 1H, CHCl₂), 11.65 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ =14.0 (OCH₂CH₃), 55.6 (OCH₃), 62.4 (OCH₂CH₃), 68.9 (CHCl₂), 102.0 (C_{Ar}), 102.2, 109.5 (CH_{Ar}) , 143.1, 164.3, 164.9 (C_{Ar}) , 169.7 (C=0). IR (ATR, cm^{-1}): $\tilde{\nu}$ =3075 (w), 2982 (w), 1656 (s), 1615 (s), 1574 (m), 1463 (w), 1434 (m), 1366 (s), 1327 (m), 1249 (s), 1205 (s), 1160 (s), 1109 (m), 1014 (s), 954 (m), 852 (s), 760 (s), 738 (s), 683 (m). MS (EI, 70 eV): m/z (%)=278 (M⁺, 27), 232 (100), 197 (12), 179 (43), 126 (7), 95 (4). HRMS (EI): Calculated for C₁₁H₁₂O₄Cl₂ (M⁺) 278.01072, found 278.01059.

4.2.2. 2-Dichloromethyl-6-hydroxy-4-methoxy-benzoic acid 2-methoxyethyl ester (3b). Starting with 1 (0.400 g, 2.0 mmol), 1-(2-methoxyethoxy)-1,3-bis(trimethylsilyloxy)-buta-1,3-diene 2b (1.218 g, 4.0 mmol) and TiCl₄ (0.379 g, 2.0 mmol) in CH₂Cl₂ (4.0 mL), 3b was obtained as a colourless oil (0.277 g, 48%). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.45$ (s, 3H, CH₂OCH₃), 3.74 (m, ³J=4.6 Hz, 2H, CH₂OCH₃), 3.84 (s, 3H, OCH₃), 4.49–4.53 (m, 2H, OCH₂CH₂), 6.47 (d, ⁴J=2.6 Hz, 1H, CH_{Ar}), 7.21 (d, ⁴*J*=2.6 Hz, 1H, CH_{Ar}), 7.82 (s, 1H, CHCl₂), 11.26 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ=55.6 (OCH₃), 59.0 (OCH₃), 64.7 (OCH₂CH₂), 69.0 (CHCl₂), 69.7 (COOCH₂), 102.1 (C_{Ar}), 102.2, 109.5 (CH_{Ar}), 143.6, 164.3, 164.4 (C_{Ar}), 169.2 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3072 (w), 2893 (w), 1715 (w), 1657 (m), 1615 (s), 1574 (m), 1436 (w), 1368 (m), 1323 (m), 1242 (s), 1200(s),1158(s),1114(s),1045(s),954(m),842(w),726(s),621(m).MS (EI, 70 eV): m/z (%)=308 (M⁺, 15), 232 (100), 198 (10), 169 (21), 135 (8), 59 (31). HRMS (EI): Calculated for C₁₂H₁₄O₅Cl₂ (M⁺) 308.02128, found 308.02119.

4.2.3. 6-Dichloromethyl-2-hydroxy-4-methoxy-3-methyl-benzoic acid methyl ester (**3c**). Starting with **1** (0.400 g, 2.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)penta-1,3-diene **2c** (1.096 g, 4.0 mmol) and TiCl₄ (0.379 g, 2.0 mmol) in CH₂Cl₂ (4.0 mL), **3c** was obtained as a colourless solid (0.118 g, 32%). ¹H NMR (250 MHz, CDCl₃): δ =2.11 (s,

3H, C_{Ar}CH₃), 3.95 (s, 3H, OCH₃), 4.01 (s, 3H, OCH₃), 7.21 (s, 1H, CH_{Ar}), 7.76 (s, 1H, CHCl₂), 11.54 (s, 1H, OH). ¹³C NMR (62.8 MHz, CDCl₃): δ =52.8 (OCH₃), 55.0 (OCH₃), 69.5 (CHCl₂), 102.2 (C_{Ar}), 103.5 (CH_{Ar}), 115.6, 140.3, 161.0, 161.8 (C_{Ar}), 170.4 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3079 (w), 2954 (w), 1722 (w), 1662 (s), 1574 (m), 1506 (w), 1436 (m), 1402 (m), 1373 (w) 1279 (s), 1226 (m), 1194 (m), 1157 (s), 1125 (br s), 994 (s), 930 (w), 789 (s), 717 (s), 667 (m). MS (EI, 70 eV): *m/z* (%)=278 (M⁺, 36), 246 (64), 210 (100), 183 (19), 149 (5), 77 (15). HRMS (EI): Calculated for C₁₁H₁₂O₄Cl₂ (M⁺) 278.01072, found 278.01045.

4.2.4. 6-Dichloromethyl-3-ethyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (3d). Starting with 1 (0.400 g, 2.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)hexa-1,3-diene 2d (1.152 g, 4.0 mmol) and TiCl₄ (0.379 g, 2.0 mmol) in CH_2Cl_2 (4.0 mL), **3d** was obtained as a colourless solid (0.281 g, 48%); mp=63-65 °C. ¹H NMR (300 MHz, CDCl₃): δ =1.08 (t, ³*J*=7.5 Hz, 3H, CH₂CH₃), 2.68 (q, ³*J*=7.5 Hz, 2H, CH₂CH₃), 3.94 (s, 3H, OCH₃), 4.01 (s, 3H, OCH₃), 7.21 (s, 1H, CH_{Ar}), 7.76 (s, 1H, CHCl₂), 11.48 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ =12.9 (CH₂CH₃), 16.4 (CH₂CH₃), 52.8 (OCH₃), 55.7 (OCH₃), 69.6 (CHCl₂), 102.4 (C_{Ar}), 103.7 (CH_{Ar}), 121.6, 140.4, 160.8, 161.6 (C_{Ar}), 170.4 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3083 (w), 2956 (w), 2851 (w), 1659 (s), 1603 (m), 1569 (w), 1437 (m), 1406 (m), 1275 (s), 1218 (s), 1154 (s), 1129 (s), 1001 (s), 943 (w), 849 (w), 724 (s), 587 (m). MS (EI, 70 eV): m/z (%)=292 (M⁺, 23), 260 (20), 224 (100), 206 (10), 161 (16), 125 (2), 77 (7). HRMS (EI): Calculated for C₁₂H₁₄O₄Cl₂ (M⁺) 292.02637, found 292.02654.

4.2.5. 6-Dichloromethyl-2-hydroxy-4-methoxy-3-propyl-benzoic acid methyl ester (3e). Starting with 1 (0.400 g. 2.0 mmol). 1methoxy-1,3-bis(trimethylsilyloxy)hepta-1,3-diene 2e (1.098 g, 4.0 mmol) and TiCl₄ (0.379 g, 2.0 mmol) in CH₂Cl₂ (4.0 mL), **3e** was obtained as a yellow solid (0.325 g, 53%); mp=68-71 °C. ¹H NMR (250 MHz, CDCl₃): δ=0.94 (t, ³*J*=7.4 Hz, 3H, CH₂CH₃), 1.43-1.61 (m, 2H, CH₂CH₃), 2.60-2.66 (m, 2H, C_{Ar}CH₂), 3.92 (s, 3H, OCH₃), 4.01 (s, 3H, OCH₃), 7.20 (s, 1H, CH_{Ar}), 7.75 (s, 1H, CHCl₂), 11.49 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ=14.2 (CH₂CH₃), 21.7, 25.0 (CH₂CH₂), 52.8 (OCH₃), 55.7 (OCH₃), 69.6 (CHCl₂), 102.4 (C_{Ar}), 103.7 (CH_{Ar}), 120.2, 140.4, 161.0, 161.8 (C_{Ar}), 170.5 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3083 (w), 2959 (m), 2899 (w), 1715 (w), 1652 (s), 1602 (m), 1511 (w), 1435 (w), 1270 (s), 1193 (m), 1132 (m), 994 (m), 729 (s), 601 (w). MS (EI, 70 eV): *m*/*z* (%)=306 (M⁺, 40), 274 (32), 238 (100), 210 (40), 175 (15), 111 (15), 69 (32). HRMS (EI): Calculated for C₁₃H₁₆O₄Cl₂ (M⁺) 306.04202, found 306.04150.

4.2.6. 3-Butyl-6-dichloromethyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (3f). Starting with 1 (0.400 g, 2.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)octa-1,3-diene 2f (1.212 g, 4.0 mmol) and TiCl₄ (0.379 g, 2.0 mmol) in CH₂Cl₂ (4.0 mL), 3f was obtained as a colourless solid (0.294 g, 46%); mp=91-92 °C. ¹H NMR (250 MHz, CDCl₃): δ=0.92 (t, ³*J*=7.2 Hz, 3H, CH₂CH₃), 1.30–1.39 (m, 2H, CH₂), 1.40-1.52 (m, 2H, CH₂), 2.63-2.68 (m, 2H, CArCH₂), 3.94 (s, 3H, OCH3), 4.01 (s, 3H, OCH3), 7.21 (s, 1H, CHAr), 7.76 (s, 1H, CHCl2), 11.48 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ =14.0 (CH₂CH₃), 22.7, 22.8, 30.7 (CH₂), 52.7 (OCH₃), 55.7 (OCH₃), 69.6 (CHCl₂), 102.3 (C_{Ar}), 103.7 (CH_{Ar}), 120.4, 140.3, 161.0, 161.7 (C_{Ar}), 170.4 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3080 (w), 2925 (m), 1657 (s), 1605 (m), 1573 (w), 1435 (m), 1404 (m), 1287 (s), 1270 (s), 1190 (m), 1138 (s), 1077 (m), 1004 (s), 991 (s), 851 (m), 725 (s), 644 (m). MS (EI, 70 eV): m/z (%)=320 (M⁺, 35), 277 (22), 245 (65), 210 (100), 179 (12), 145 (5), 89 (8). HRMS (EI): Calculated for C₁₄H₁₈O₄Cl₂ (M⁺) 320.05767, found 320.05768.

4.2.7. 3-Allyl-6-dichloromethyl-2-hydroxy-4-methoxy-benzoic acid methyl ester (**3g**). Starting with **1** (0.400 g, 2.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)hepta-1,3,6-triene **2g** (1.204 g, 4.0 mmol) and TiCl₄ (0.379 g, 2.0 mmol) in CH₂Cl₂ (4.0 mL), **3g** was obtained as a colourless oil (0.316 g, 52%). ¹H NMR (300 MHz, CDCl₃): δ =3.41-

3.44 (m, 2H, C_{Ar}CH₂), 3.95 (s, 3H, OCH₃), 4.01 (s, 3H, OCH₃), 4.94– 5.06 (m, 2H, CH₂CHCH₂), 5.86–5.99 (m, 1H, CH₂CHCH₂), 7.23 (s, 1H, CH_{Ar}), 7.77 (s, 1H, CHCl₂), 11.54 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): δ =27.1 (C_{Ar}CH₂), 52.8 (OCH₃), 55.8 (OCH₃), 69.4 (CHCl₂), 102.5 (C_{Ar}), 103.8 (CH_{Ar}), 114.8 (CH₂CH), 117.2 (C_{Ar}), 135.2 (CH₂CH), 141.0, 160.9, 161.6 (C_{Ar}), 170.3 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3078 (w), 2955 (w), 1788 (w), 1720 (w), 1659 (s), 1605 (m), 1510 (w), 1403 (m), 1360 (w), 1276 (s), 1195 (s), 1153 (s), 1133 (s), 999 (m), 912 (m), 724 (s), 630 (m). MS (EI, 70 eV): *m/z* (%)=304 (M⁺, 40), 269 (29), 236 (100), 203 (13), 173 (59), 115 (12), 77 (14). HRMS (EI): Calculated for C₁₃H₁₄O₄Cl₂ (M⁺) 304.02637, found 304.02625.

4.2.8. 6-Dichloromethyl-2-hydroxy-4-methoxy-3-(3-phenyl-propyl)benzoic acid methyl ester (**3h**). Starting with **1** (0.400 g, 2.0 mmol), (7-methoxy-5,7-bis(trimethylsilyloxy)-hepta-4,6-dienyl)benzene 2h (1.515 g, 4.0 mmol) and TiCl₄ (0.379 g, 2.0 mmol) in CH₂Cl₂ (4.0 mL), **3h** was obtained as a colourless oil (0.329 g, 43%). ¹H NMR (300 MHz, CDCl₃): δ =1.89–2.00 (m, 2H, C_{Ar}CH₂CH₂), 2.76–2.86 (m, 4H, C_{Ar}CH₂), 4.02 (s, 3H, OCH₃), 4.10 (s, 3H, OCH₃), 7.28-7.38 (m, 6H, CH_{Ar}), 7.87 (s, 1H, CHCl₂), 11.62 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): δ =22.9, 29.8, 35.9 (CH2CH2CH2), 52.7 (OCH3), 55.7 (OCH3), 69.5 (CHCl2), 102.4 (CAr), 103.6 (CHAr), 119.8 (CAr), 125.5, 128.1, 128.3 (CHAr), 140.5, 142.6, 161.0, 161.7 (C_{Ar}), 170.4 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3025 (w), 2939 (w), 1934 (w), 1804 (w), 1703 (w), 1661 (m), 1605(m), 1496 (w), 1405 (m), 1359 (w), 1280 (s), 1226 (m), 1157 (s), 1116 (s), 1002 (m), 843 (w), 733 (m), 699 (m). MS (EI, 70 eV): m/z (%)=382 (M⁺, 40), 347 (14), 314 (7), 245 (32), 210 (100), 176 (16), 91 (31). HRMS (EI): Calculated for C₁₉H₂₀O₄Cl₂ (M⁺) 382.07332, found 382.07328.

4.3. General procedure for the synthesis of 4a-d

To a methanol (10 mL) solution of sodium methanolate (3.0 mmol) was added **3** (1.0 mmol) under argon atmosphere and the solution was stirred for 24 h at room temperature. The solution was poured into an aqueous solution of HCl (10%). The organic and the aqueous layers were separated and the latter was extracted (3×30 mL) with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, heptane–EtOAc=15:1).

4.3.1. 3-*Ethyl*-6-*formyl*-2-*hydroxy*-4-*methoxy*-*benzoic acid methyl ester* (**4a**). Starting with **3d** (0.295 g, 1.0 mmol), NaOMe (0.165 g, 3.0 mmol) in dry MeOH (10 mL), **4a** was obtained as a colourless solid (0.167 g, 70%); mp=57-58 °C. ¹H NMR (300 MHz, CDCl₃): δ =1.09 (t, ³*J*=7.5 Hz, 3H, CH₂CH₃), 2.71 (q, ³*J*=7.5 Hz, 2H, CH₂CH₃), 3.91 (s, 3H, OCH₃), 3.98 (s, 3H, OCH₃), 6.93 (s, 1H, CH_{Ar}), 10.47 (s, 1H, CHO), 11.27 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ =12.8 (CH₂CH₃), 16.6 (CH₂CH₃), 52.7 (OCH₃), 55.9 (OCH₃), 103.2 (CH_{Ar}), 105.3, 125.0, 137.5, 161.0, 161.6 (C_{Ar}), 170.4 (C=O), 192.2 (CHO). IR (ATR, cm⁻¹): $\tilde{\nu}$ =2961 (w), 2875 (w), 1662 (s), 1596 (m), 1570 (m), 1503 (w), 1437 (m), 1390 (m), 1346 (m), 1276 (s), 1251 (s), 1196 (m), 1155 (s), 1131 (s), 1058 (m), 1003 (m), 957 (m), 944 (m), 806 (m), 729 (m). MS (EI, 70 eV): *m/z* (%)=238 (M⁺, 65), 209 (41), 191 (26), 179 (100), 150 (63), 135 (31), 107 (16), 77 (29). HRMS (EI): Calculated for C₁₂H₁₄O₅ (M⁺) 238.08358, found 238.08340.

4.3.2. 6-Formyl-2-hydroxy-4-methoxy-3-propyl-benzoic acid methyl ester (**4b**). Starting with **3e** (0.306 g, 1.0 mmol), NaOMe (0.165 g, 3.0 mmol) in dry MeOH (10 mL), **4b** was obtained as a colourless solid (0.194 g, 77%); mp=72-73 °C. ¹H NMR (250 MHz, CDCl₃): δ =0.93 (t, ³J=7.4 Hz, 3H, CH₂CH₃), 1.46–1.58 (m, 2H, CH₂CH₃), 2.63–2.68 (m, 2H, C_{Ar}CH₂), 3.89 (s, 3H, OCH₃), 3.98 (s, 3H, OCH₃), 6.92 (s, 1H, CH_{Ar}), 10.47 (s, 1H, CHO), 11.27 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ =14.1 (CH₂CH₃), 21.6, 25.1 (CH₂CH₂), 52.7 (OCH₃), 55.8 (OCH₃), 103.1 (CH_{Ar}), 105.2, 123.6, 137.6, 161.2, 161.8 (C_{Ar}), 170.4

(C=O), 192.2 (CHO). IR (ATR, cm⁻¹): $\tilde{\nu}$ =2924 (w), 2867 (w), 1686 (m), 1660 (s), 1570 (m), 1503 (w), 1435 (m), 1386 (m), 1346 (m), 1298 (s), 1285 (s), 1217 (s), 1135 (s), 1077 (m), 1036 (w), 999 (w), 951 (w), 875 (w), 795 (m), 754 (s), 610 (m). MS (EI, 70 eV): m/z (%)=252 (M⁺, 66), 223 (52), 193 (100), 177 (42), 135 (18), 105 (17), 77 (28). HRMS (EI): Calculated for C₁₃H₁₆O₅ (M⁺) 252.09923, found 252.09915.

4.3.3. 3-Allvl-6-formvl-2-hvdroxv-4-methoxv-benzoic acid methyl ester (4c). Starting with 3g (0.304 g, 1.0 mmol), NaOMe (0.165 g, 3.0 mmol) in dry MeOH (10 mL), 4c was obtained as a colourless solid (0.202 g, 81%); mp=54-55 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.44 - 3.47$ (m, 2H, C_{Ar}CH₂), 3.91 (s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), 4.95-5.04 (m, 2H, CH₂CHCH₂), 5.85-5.98 (m, 1H, CH₂CH), 6.94 (s, 1H, CH_{Ar}), 10.49 (s, 1H, CHO), 11.32 (s, 1H, OH). ¹³C NMR (75.5 MHz, CDCl₃): δ =27.2 (C_{Ar}CH₂), 52.8 (OCH₃), 56.0 (OCH₃), 103.2 (CH_{Ar}), 105.4 (C_{Ar}), 115.1 (CH₂CH), 120.6 (C_{Ar}), 134.9, (CH₂CH), 138.1, 161.1, 161.7 (C_{Ar}), 170.3 (C=0), 192.2 (CHO). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3077 (w), 2946 (w), 2845 (w), 1661 (s), 1602 (w), 1570 (s), 1504 (w), 1435 (m), 1408 (m), 1344 (m), 1284 (s), 1212 (s), 1158 (s), 1131 (s), 1035 (m), 995 (s), 910 (m), 876 (m), 797 (s), 750 (s), 631 (m). MS (EI, 70 eV): m/z (%)=250 (M⁺, 75), 222 (61), 191 (100), 175 (74), 147 (12), 119 (24), 91 (41). HRMS (EI): Calculated for C₁₃H₁₄O₅ (M⁺) 250.08358, found 250.08381.

4.3.4. 6-Formyl-2-hydroxy-4-methoxy-3-(3-phenyl-propyl)-benzoic acid methyl ester (4d). Starting with 3h (0.153 g, 0.4 mmol), NaOMe (0.083 g, 1.5 mmol) in dry MeOH (5 mL), 4d was obtained as a colourless solid (0.110 g, 72%); mp=65-67 °C. ¹H NMR (300 MHz. CDCl₃): *δ*=1.80−1.90 (m, 2H, C_{Ar}CH₂CH₂), 2.65−2.79 (m, 4H, C_{Ar}CH₂), 3.89 (s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), 6.93 (s, 1H, CH_{Ar}), 7.15-7.26 (m, 5H, CH_{Ar}), 10.48 (s, 1H, CHO), 11.31 (s, 1H, OH). ¹³C NMR (62.9 MHz, CDCl₃): δ=23.1, 29.7, 35.9 (CH₂CH₂CH₂), 52.7 (OCH₃), 55.8 (OCH₃), 103.1 (CH_{Ar}), 105.2, 123.2 (C_{Ar}), 125.6, 128.1, 128.3 (CH_{Ar}), 137.7, 142.5, 161.2, 161.7 (C_{Ar}), 170.4 (C=O), 192.2 (CHO). IR (ATR, cm⁻¹): $\tilde{\nu}$ =2937 (w), 2856 (w), 1746 (w), 1657 (s), 1569 (m), 1494 (w), 1438 (m), 1387 (m), 1341 (m), 1294 (s), 1273 (s), 1255 (s), 1200 (s), 1146 (s), 1107 (s), 1000 (s), 948 (m), 846 (m), 804 (m), 746 (s), 699 (s). MS (EI, 70 eV): m/z (%)=328 (M⁺, 2), 269 (19), 224 (100), 192 (99), 164 (18), 105 (16), 77 (17). HRMS (EI): Calculated for C₁₉H₂₀O₅ (M⁺) 328.13053, found 328.13059.

4.4. General procedure for the synthesis of 5a-k

To a CH₂Cl₂ solution (10 mL) of **1** (1.0 mmol) was added **2** (2.0 mmol) and, subsequently, Me₃SiOTf (0.244 g, 1.1 mmol) at -78 °C. The temperature of the solution was allowed to warm to 20 °C during 12–14 h with stirring. To the solution was added hydrochloric acid (10%, 10 mL) and the organic and the aqueous layers were separated. The latter was extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, heptane–EtOAc=15:1).

4.4.1. 2-Dichloromethyl-6-(2-oxopropyl)-pyran-4-one (**5a**). Starting with **1** (0.400 g, 2.0 mmol), 2,4-bis(trimethylsilyloxy)-penta-1,3-diene **2i** (0.978 g, 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), **5a** was obtained as a brownish viscous oil (0.099 g, 21%). ¹H NMR (300 MHz, CDCl₃): δ =2.30 (s, 3H, CH₃), 3.68 (s, 2H, CH₂), 6.24 (d, ⁴*J*=2.1 Hz, 1H, CHCO), 6.32 (s, 1H, CHCl₂), 6.52 (d, ⁴*J*=2.1 Hz, 1H, CHCO). ¹³C NMR (62.9 MHz, CDCl₃): δ =30.0 (CH₃), 47.8 (CH₂CO), 65.2 (CHCl₂), 112.9, 116.9 (CHCO), 161.3, 161.9 (OCCH), 178.7 (CHC=O), 200.1 (CH₂CO). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3078 (w), 2922 (w), 1725 (m), 1656 (s), 1603 (m), 1394 (m), 1314 (m), 1213 (w), 1156 (s), 975 (w), 928 (s), 873 (m), 761 (s), 741 (s), 655 (m), 621 (w). MS (EI, 70 eV): *m*/*z* (%)=234 (M⁺, 1), 192 (100), 157 (27), 128 (7), 109 (8),

 $69\,(17).\,HRMS\,(EI):$ Calculated for $C_9H_8O_3Cl_2\,(M^+)\,233.98450,$ found 233.98491.

4.4.2. 2-Dichloromethyl-6-(2-oxo-2-phenyl-ethyl)-pyran-4-one (5b). Starting with 1 (0.400 g, 2.0 mmol), (1,3-bis(trimethylsilyloxy)buta-1,3-dienyl)benzene 2j (1.224 g, 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), 5b was obtained as a colourless solid (0.148 g, 25%); mp=76-77 °C, ¹H NMR (300 MHz, CDCl₃); δ =4.25 (s, 2H, CH₂), 6.29 (d, ⁴*J*=2.2 Hz, 1H, CHCO), 6.31 (s, 1H, CHCl₂), 6.53 (d, ⁴/=2.2 Hz, 1H, CHCO), 7.49-7.54 (m, 2H, CH_{Ar}), 7.64 (ddd, ³*J*=7.4 Hz, ³*J*=6.2 Hz, ⁴*J*=2.0 Hz, 1H, CH_{Ar}), 7.97–8.00 (m, 2H, CH_{Ar}). ¹³C NMR (62.9 MHz, CDCl₃): δ =43.2 (CH₂CO), 65.2 (CHCl₂), 113.0, 117.2 (CHCO), 128.4, 129.0, 134.2 (CHAr), 135.5 (CAr), 161.3, 162.4 (OCCH), 178.6 (C=O), 192.2 (C_{Ar}CO). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3076 (w), 2979 (m), 2662 (w), 2476 (w), 1668 (s), 1632 (s), 1609 (m), 1449 (w), 1392 (s), 1338 (m), 1299 (m), 1217 (m), 1196 (m), 1149 (m), 1078 (w), 978 (m), 964 (m), 923 (s), 879 (m), 824 (w), 767 (s), 734 (s), 690 (s), 666 (m), 587 (m). MS (EI, 70 eV): *m*/*z* (%)=297 (M⁺, 6), 218 (32), 192 (15), 176 (100), 94 (32), 78 (8). HRMS (EI): Calculated for C₁₄H₁₁O₃Cl₂ ((M+H)⁺) 297.00798, found 297.0079.

4.4.3. (6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid ethyl ester (**5c**). Starting with **1** (0.400 g, 2.0 mmol), 1-ethoxy-1,3-bis(trimethyl-silyloxy)buta-1,3-diene **2a** (1.096 g, 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), **5c** was obtained as an orange oil (0.321 g, 61%). ¹H NMR (300 MHz, CDCl₃): δ =1.27 (t, ³*J*=7.2 Hz, 3H, OCH₂CH₃), 3.59 (s, 2H, CCH₂C), 4.21 (q, ³*J*=7.2 Hz, 2H, OCH₂CH₃), 6.27 (d, ⁴*J*=2.1 Hz, 1H, CHCO), 6.33 (s, 1H, CHCl₂), 6.51 (d, ⁴*J*=2.1 Hz, 1H, CHCO). ¹³C NMR (75.5 MHz, CDCl₃): δ =14.1 (OCH₂CH₃), 39.4 (CH₂CO), 62.0 (OCH₂CH₃), 65.1 (CHCl₂), 112.9, 116.6 (CHCO), 161.2, 161.5 (OCCH), 166.7 (COO), 178.7 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3078 (w), 2983 (w), 1734 (s), 1659 (s), 1627 (s), 1465 (w), 1393 (s), 1331 (w), 1250 (m), 1162 (m), 1026 (m), 975 (w), 928 (s), 873 (m), 760 (s), 734 (s), 621 (m), 590 (w). MS (EI, 70 eV): *m/z* (%)=264 (M⁺, 56), 192 (80), 157 (53), 128 (100), 109 (17), 69 (56). HRMS (EI): Calculated for C₁₀H₁₀O₄Cl₂ (M⁺) 263.99507, found 263.99509.

4.4.4. (6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid isopropyl ester (5d). Starting with 1 (0.400 g, 2.0 mmol), 1-isopropyloxy-1,3bis(trimethylsilyloxy)buta-1,3-diene 2k (1.114 g, 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), 5d was obtained as an orange oil (0.262 g, 47%). 1 H NMR (300 MHz, CDCl_3): $\delta{=}1.24$ (d, $^{3}J=6.3$ Hz, 6H, OCH(CH₃)₂), 3.56 (s, 2H, CCH₂C), 5.01–5.10 (m, ${}^{3}J=6.3$ Hz, 1H, OCH(CH₃)₂), 6.26 (d, ${}^{4}J=2.2$ Hz, 1H, CHCO), 6.33 (s, 1H, CHCl₂), 6.51 (d, ⁴J=2.2 Hz, 1H, CHCO). ¹³C NMR (75.5 MHz, CDCl₃): δ =21.6 (CH(CH₃)₂), 39.7 (CH₂CO), 65.1 (CHCl₂), 69.9 (COOCH), 112.7, 116.4 (CHCO), 161.3, 161.8 (OCCH), 166.2 (COO), 178.9 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3079 (w), 2982 (w), 1730 (m), 1659 (s), 1627 (m), 1454 (w), 1394 (s), 1321 (m), 1258 (m), 1172 (m), 1101 (s), 996 (m), 928 (s), 873 (m), 761 (m), 680 (w), 621 (m). MS (EI, 70 eV): *m*/*z*=278 (M⁺, 11), 219 (14), 192 (27), 163 (11), 128 (12), 69 (15), 43 (100). HRMS (EI): Calculated for C₁₁H₁₂O₄Cl₂ (M⁺) 278.01072, found 278.01083.

4.4.5. (6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid isobutyl ester (**5e**). Starting with **1** (0.400 g, 2.0 mmol), 1-isobutoxy-1,3-bis(trimethylsilyloxy)buta-1,3-diene **2l** (1.202 g, 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), **5e** was obtained as an orange oil (0.205 g, 35%). ¹H NMR (250 MHz, CDCl₃): δ =0.85 (d, ³J=6.8 Hz, 6H, CH(CH₃)₂), 1.80–1.96 (m, ³J=6.8 Hz, 1H, CH(CH₃)₂), 3.58 (s, 2H, CCH₂C), 3.88 (d, ³J=6.7 Hz, 2H, OCH₂CH), 6.25 (d, ⁴J=2.2 Hz, 1H, CHCO), 6.36 (s, 1H, CHCl₂), 6.48 (d, ⁴J=2.2 Hz, 1H, CHCO). ¹³C NMR (62.9 MHz, CDCl₃): δ =18.8 (CH(CH₃)₂), 27.4 (CH(CH₃)₂), 39.2 (CH₂CO), 65.0 (CHCl₂), 71.8 (COOCH₂), 112.7, 116.4 (CHCO), 161.3, 161.7 (OCCH), 166.7 (COO), 178.8 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3080 (w), 2962 (w), 1736 (m), 1660 (s), 1629 (m), 1469 (w), 1393 (s), 1321 (w), 1246 (br m), 1163 (s), 1104 (w), 1005 (m), 928

(s), 874 (m), 761 (s), 683 (w), 622 (m). MS (EI, 70 eV): m/z=292 (M⁺, 41), 237 (77), 192 (55), 163 (15), 128 (30), 99 (11), 69 (28), 57 (100), 41 (60). HRMS (EI): Calculated for C₁₂H₁₄O₄Cl₂ (M⁺) 292.02637, found 292.02661.

4.4.6. (6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid benzyl ester (**5f**). Starting with **1** (0.400 g, 2.0 mmol), (1,3-bis(trimethyl-silyloxy)buta-1,3-dienyloxymethyl)benzene **2m** (1.344 g, 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), **5f** was obtained as an orange oil (0.197 g, 30%). ¹H NMR (300 MHz, CDCl₃): δ =3.64 (s, 2H, CCH₂C), 5.19 (s, 2H, OCH₂C), 6.26 (s, 1H, CHCl₂), 6.29 (d, ⁴*J*=2.1 Hz, 1H, CHCO), 6.52 (d, ⁴*J*=2.1 Hz, 1H, CHCO), 7.33–7.38 (m, 5H, CH_Ar). ¹³C NMR (75.5 MHz, CDCl₃): δ =39.3 (CH₂CO), 65.0 (CHCl₂), 67.8 (C_{Ar}CH₂O), 112.9, 116.9 (CHCO), 128.5, 128.7 (CH_Ar), 134.1 (C_Ar), 161.3, 161.4 (OCCH), 166.5 (COO), 178.9 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3066 (w), 3004 (w), 1738 (m), 1659 (s), 1605 (br m), 1455 (w), 1395 (m), 1321 (w), 1256 (m), 1210 (m), 1159 (s), 1142 (s), 1000 (m), 929 (m), 874 (m), 730 (s), 696 (s), 646 (w), 620 (m). MS (EI, 70 eV): *m/z* (%)=326 (M⁺, 3), 219 (2), 192 (15), 158 (3), 91 (100), 65 (8). HRMS (EI): Calculated for C₁₅H₁₂O₄Cl₂ (M⁺) 326.01072, found 326.01085.

4.4.7. (6-Dichloromethyl-4-oxo-4H-pyran-2-yl)-acetic acid 2-methoxyethyl ester (5g). Starting with 1 (0.400 g, 2.0 mmol), 1-(2-methoxyethoxy)-1,3-bis(trimethylsilyloxy)buta-1,3-diene 2b(1.216 g, 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), 5g was obtained as a colourless solid (0.206 g, 35%); mp=60-61 °C. ¹H NMR (300 MHz, CDCl₃): δ=3.32 (s, 3H, OCH₃), 3.54–3.57 (m, 2H, CH₂OCH₃), 3.61 (s, 2H, CCH₂C), 4.25–4.28 (m, 2H, COCH₂), 6.25 (d, ⁴/=2.1 Hz, 1H, CHCO), 6.34 (s. 1H, CHCl₂), 6.48 (d. ${}^{4}I$ =2.1 Hz, 1H, CHCO), ${}^{13}C$ NMR (62.9 MHz, CDCl₃): δ =39.0 (*C*H₂CO), 58.8 (OCH₃), 64.7 (OCH₂CH₂), 65.0 (CHCl₂), 69.9 (COOCH2), 112.9, 116.5 (CHCO), 161.2 (OCCH), 166.7 (COO), 178.5 (C=0). IR (ATR, cm⁻¹): $\tilde{\nu}=3085$ (w), 3006 (w), 2888 (w), 1732 (s), 1653 (s), 1617 (s), 1419 (w), 1400 (s), 1366 (m), 1280 (s), 1229 (m), 1181 (m), 1124(s), 1098(m), 1032(s), 993(m), 933(s), 894(s), 856(s), 759(s), 733 (s), 625 (m). MS (EI, 70 eV): *m*/*z*=294 (M⁺, 12), 228 (59), 192 (51), 158 (30), 128 (34), 99 (12), 69 (33), 45 (100). HRMS (EI): Calculated for C₁₁H₁₂O₅Cl₂ (M⁺) 294.00563, found 294.05227.

4.4.8. (6-Dichloromethyl-3-methyl-4-oxo-4H-pyran-2-yl)-acetic acid methyl ester (**5h**). Starting with **1** (0.400 g, 2.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)penta-1,3-diene **2c** (1.096 g, 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), **5h** was obtained as an orange oil (0.184 g, 35%). ¹H NMR (300 MHz, CDCl₃): δ =1.95 (s, 3H, CCH₃), 3.70 (s, 2H, CCH₂C), 3.74 (s, 3H, OCH₃), 6.33 (s, 1H, CHCl₂), 6.54 (s, 1H, CHCO). ¹³C NMR (62.9 MHz, CDCl₃): δ =9.8 (CCH₃), 37.3 (CH₂CO), 52.8 (OCH₃), 65.1 (CHCl₂), 111.2 (CHCO), 124.3 (CCH₃), 157.4, 160.6 (OC), 167.5 (COO), 179.3 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3084 (w), 3002 (w), 1740 (m), 1656 (s), 1605 (m), 1411 (m), 1381 (m), 1322 (m), 1271 (m), 1204 (m), 1155 (s), 1092 (m), 1044 (w), 1006 (m), 909 (w), 868 (w), 758 (s), 729 (s), 619 (m). MS (EI, 70 eV): *m/z* (%)=264 (M⁺, 92), 233 (25), 196 (100), 155 (86), 142 (58), 83 (4), 69 (34), 53 (27). HRMS (EI): Calculated for C₁₀H₁₀O₄Cl₂ (M⁺) 263.99507, found 263.99455.

4.4.9. (6-Dichloromethyl-3-ethyl-4-oxo-4H-pyran-2-yl)-acetic acid methyl ester (**5i**). Starting with **1** (0.400 g, 2.0 mmol), 1-methoxy-1,3-bis(trimethylsilyloxy)hexa-1,3-diene **2d** (1.152 g, 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), **5i** was obtained as a colourless solid (0.183 g, 33%); mp=64–65 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.00 (t, ³*J*=7.5 Hz, 3H, CH₂CH₃), 2.37 (q, ³*J*=7.5 Hz, 2H, CH₂CH₃), 3.65 (s, 2H, CCH₂C), 3.70 (s, 3H, OCH₃), 6.32 (s, 1H, CHCl₂), 6.47 (s, 1H, CHCO). ¹³C NMR (62.9 MHz, CDCl₃): δ =12.6 (CH₂CH₃), 17.9 (CH₂CH₃), 36.8 (CH₂CO), 52.6 (OCH₃), 65.1 (CHCl₂), 111.7 (CHCO), 129.4 (CCH₂CH₃), 157.0, 160.2 (OC), 167.7 (COO), 178.3 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =2995 (w), 2959 (w), 1739 (s), 1654 (s), 1601 (s), 1461 (w), 1415 (s), 1289 (w), 1263 (s), 1186 (m), 1131 (m), 1108 (m), 1015 (m), 978 (m), 907 (w), 850 (m), 788 (m), 758 (s), 671 (w), 637 (m). MS (EI, 70 eV): m/z (%)=278 (M⁺, 21), 242 (99), 210 (100), 184 (21), 169 (51), 143 (21), 101 (11), 69 (24). HRMS (EI): Calculated for C₁₁H₁₂O₄Cl₂ (M⁺) 278.01157, found 278.01148.

4.4.10. (6-Dichloromethyl-3-heptyl-4-oxo-4H-pyran-2-yl)-acetic acid ethyl ester (5i). Starting with 1 (0.400 g, 2.0 mmol), 1-ethoxy-1.3-bis(trimethylsilyloxy)undeca-1.3-diene **2n** (1.492 g. 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), 5j was obtained as an orange oil (0.217 g, 30%). ¹H NMR (300 MHz, CDCl₃): δ =0.86 (t, ³*J*=6.8 Hz, 3H, CH₂CH₃), 1.27 (t, ³*J*=7.1 Hz, 3H, OCH₂CH₃), 1.29–1.46 (m, 10H, (CH₂)₅CH₃), 2.36-2.41 (m, 2H, CCH₂CH₂), 3.68 (s, 2H, CCH₂C), 4.21 (q, ³*J*=7.1 Hz, 2H, OCH₂CH₃), 6.31 (s, 1H, CHCl₂), 6.57 (s, 1H, CHCO). ¹³C NMR (75.5 MHz, CDCl₃): δ =14.0, 14.1 (CH₃), 22.6, 24.7, 28.4, 29.1, 29.6, 31.7 ((CH₂)₆CH₃), 37.3 (CH₂CO), 62.0 (OCH₂CH₃), 65.2 (CHCl₂), 111.6 (CHCO), 128.4 (CCH₂CH₂), 157.8, 160.4 (OC), 167.3 (COO), 179.0 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =2926 (w), 2855 (w), 1739 (s), 1645 (s), 1464 (w), 1418 (m), 1267 (m), 1175 (s), 1107 (m), 1025 (m), 867 (w), 763 (s), 676 (m), 637 (w). MS (EI, 70 eV): *m*/*z* (%)=362 (M⁺, 2), 316 (15), 275 (100), 241 (34), 206 (24), 155 (14), 91 (6). HRMS (EI): Calculated for C₁₇H₂₄O₄Cl₂ (M⁺) 362.10462, found 362.10426.

4.4.11. (6-Dichloromethyl-3-octyl-4-oxo-4H-pyran-2-yl)-acetic acid ethyl ester (5k). Starting with 1 (0.400 g, 2.0 mmol), 1-ethoxy-1,3bis-trimethylsilanyloxy-dodeca-1,3-diene 20 (1.548 g, 4.0 mmol) and TMSOTf (0.488 g, 2.2 mmol) in CH₂Cl₂ (20 mL), 5k was obtained as an orange oil (0.188 g, 25%). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.86$ (t, ³*I*=6.8 Hz, 3H, CH₂CH₃), 1.27 (t, ³*I*=7.2 Hz, 3H, OCH₂CH₃), 1.28-1.61 (m, 12H, (CH₂)₆CH₃), 2.36-2.41 (m, 2H, CCH₂CH₂), 3.67 (s, 2H, CCH₂C), 4.21 (q, ${}^{3}J=7.2$ Hz, 2H, OCH₂CH₃), 6.30 (s, 1H, CHCl₂), 6.50 (s, 1H, CHCO). 13 C NMR (75.5 MHz, CDCl₃): δ =14.0, 14.1 (CH₃), 22.6, 24.7, 28.4, 29.2, 29.4, 29.7, 31.8 ((CH₂)₇CH₃), 37.3 (CH₂CO), 61.9 (OCH₂CH₃), 65.3 (CHCl₂), 111.7 (CHCO), 128.4 (CCH₂CH₂), 157.5, 160.3 (OC), 167.4 (COO), 178.7 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =2925 (m), 2854 (w), 1740 (m), 1656 (s), 1602 (m), 1463 (w), 1415 (m), 1323 (w), 1252 (m), 1176 (s), 1107 (m), 1027 (m), 911 (w), 848 (w), 762 (s), 672 (w). MS (EI, 70 eV): *m*/*z* (%)=376 (M⁺, 5), 330 (19), 289 (100), 278 (33), 255 (18), 206 (23), 177 (12), 155 (12), 69 (20). HRMS (EI): Calculated for C₁₈H₂₆O₄Cl₂ (M⁺) 376.12027, found 376.12002.

Acknowledgements

Financial support from the State of Mecklenburg-Vorpommern (scholarships for V.K., G.G. and for S.M.) is gratefully acknowledged.

References and notes

- Medwid, J. B.; Paul, R.; Baker, J. S.; Brockman, J. A.; Du, M. T.; Hallett, W. A.; Hanifin, J. W.; Hardy, R. A., Jr.; Tarrant, M. E.; Torley, L. W.; Wrenn, S. J. Med. Chem. 1990, 33, 1230.
- 2. Briggs, J. C.; Haines, A. H.; Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 1995, 27.
- Pirrung, M. C.; Tumey, L. N.; McClerren, A. L.; Raetz, C. R. H. J. Am. Chem. Soc. 2003, 125, 1575.
- (a) Spaggiari, A.; Vaccari, D.; Davoli, P.; Torre, G.; Prati, F. J. Org. Chem. 2007, 72, 2216;
 (b) Leonel, E.; Paugam, J.-P.; Heintz, M.; Nedelec, J.-Y. Synth. Commun. 1999, 29, 4015 and references cited therein.
- 5. Makosza, M.; Owczarczyk, Z. J. Org. Chem. 1989, 54, 5094.
- 6. Chan, T. H.; Stossel, D. J. Org. Chem. 1986, 51, 2423.
- Mamat, C.; Pundt, T.; Dang, T. H. T.; Klassen, R.; Reinke, H.; Köckerling, M.; Langer, P. Eur. J. Org. Chem. 2008, 492.
- 8. For a review of [3+3] cyclizations of 1,3-bis(silyl enol ethers) see: Feist, H.; Langer, P. Synthesis **2007**, 327.
- 9. For a review of 1,3-bis(silyl enol ethers) in general, see: Langer, P. Synthesis **2002**, 441.
- (a) Lubbe, M.; Bunescu, A.; Villinger, A.; Langer, P. Synlett **2008**, 1862; (b) Bunescu, A.; Reimann, S.; Lubbe, M.; Spannenberg, A.; Langer, P. J. Org. Chem. **2009**, 74, 5002.
- (a) Lubbe, M.; Mamat, C.; Langer, P. Synlett 2008, 1684; (b) Karapetyan, V.; Mkrtchyan, S.; Lubbe, M.; Villinger, A.; Langer, P. Tetrahedron 2009, 65, 6211.

- 12. For 1,1-diethoxy-4,4-dichlorobut-1-en-3-one, see: Scharf, H. D.; Sporrer, E. Synthesis 1975, 733.
- 13. (a) Hojo, M.; Masuda, R.; Okada, E. Synthesis **1986**, 1013; See also: (b) Effenberger, F.; Maier, R.; Schoenwaelder, K.-H.; Ziegler, T. Chem. Ber. 1982, 115, 2766.

- Chan, T. H.; Brownbridge, P. J. Am. Chem. Soc. **1980**, *102*, 3534.
 Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. **1993**, *115*, 830.
 Nguyen, V. T. H.; Bellur, E.; Appel, B.; Langer, P. Synthesis **2006**, 2865.
- (a) Brownbridge, P.; Chan, T. H.; Brook, M. A.; Kang, G. . *Can. J. Chem.* **1983**, *61*, 688; (b) Hirai, K.; Ojima, I. *Tetrahedron Lett.* **1983**, *24*, 785.
 CCDC-746023, 746024, 746025, and 746026 contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/ retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ; Fax: (1411)232-802-802 (+44)1223-336-033; or deposit@ccdc.cam.ac.uk.